
1

MSCOMM – Visual Basic [Serial Port Functions]
Prepared by: Dr. Saeed. R. Taghizadeh [Source: Microsoft MSDN]
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/comm98/dt_vbobjComm_P.asp

Break Property
CDHolding Property
CTSHolding Property
CommEvent Property
CommID Property
CommPort Property
DSRHolding Property
DTREnable Property
EOFEnable Property
Handshaking Property
InBufferCount Property
InBufferSize Property
Index Property (ActiveX Controls)
Input Property
InputLen Property
InputMode Property
Name Property
NullDiscard Property, MSComm Control
Object Property (ActiveX Controls)
OutBufferCount Property
OutBufferSize Property
Output Property
Parent Property
ParityReplace Property
PortOpen Property
RTSEnable Property
RThreshold Property
SThreshold Property
Settings Property
Tag Property (ActiveX Controls

2

Break Property
See Also Example Applies To
Sets or clears the break signal state. This property is not available at design time.
Syntax
object.Break [= value]
The Break property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value A Boolean expression specifying whether the break signal state is set, as described in
Settings.

Settings
The settings for value are:
Setting Description
True Sets the break signal state.
False Clears the break signal state.

Remarks
When set to True, the Break property sends a break signal. The break signal suspends character
transmission and places the transmission line in a break state until you set the Break property to False.
Typically, you set the break state for a short interval of time, and only if the device with which you are
communicating requires that a break signal be set.
Data Type
Boolean

Break Property Example
The following example shows how to send a break signal for a tenth of a second:
' Set the Break condition.
MSComm1.Break = True
' Set duration to 1/10 second.
Duration! = Timer + .1
' Wait for the duration to pass.
Do Until Timer > Duration!
 Dummy = DoEvents()
Loop
' Clear the Break condition.
MSComm1.Break = False

3

CDHolding Property
See Also Example Applies To
Determines whether the carrier is present by querying the state of the Carrier Detect (CD) line. Carrier
Detect is a signal sent from a modem to the attached computer to indicate that the modem is online. This
property is not available at design time and is read-only at run time.
Syntax
object.CDHolding
The CDHolding property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The settings for the CDHolding property are:
Setting Description
True Carrier Detect line is high
False Carrier Detect line is low

Remarks
Note It is especially important to trap a loss of the carrier in a host application, such as a bulletin board,
because the caller can hang up (drop the carrier) at any time.
The Carrier Detect is also known as the Receive Line Signal Detect (RLSD).
Data Type
Boolean

CTSHolding Property
See Also Example Applies To
Determines whether you can send data by querying the state of the Clear To Send (CTS) line. Typically,
the Clear To Send signal is sent from a modem to the attached computer to indicate that transmission can
proceed. This property is not available at design time and is read-only at run time.
Syntax
object.CTSHolding
The CTSHolding property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

The following table lists the CTSHolding property settings for the MSComm control.
Setting Description
True Clear To Send line high.
False Clear To Send line low.

Remarks
The Clear To Send line is used in RTS/CTS (Request To Send/Clear To Send) hardware handshaking. The
CTSHolding property gives you a way to manually poll the Clear To Send line if you need to determine its
state.
For more information on handshaking protocols, see the Handshaking property.
Data Type
Boolean

4

CommEvent Property
See Also Example Applies To
Returns the most recent communication event or error. This property is not available at design time and is
read-only at run time.
Syntax
object.CommEvent
The CommEvent property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
Although the OnComm event is generated whenever a communication error or event occurs, the
CommEvent property holds the numeric code for that error or event. To determine the actual error or event
that caused the OnComm event, you must reference the CommEvent property.
The CommEvent property returns one of the following values for communication errors or events. These
constants can also be found in the Object Library for this control.
Communication errors include the following settings:
Constant Value Description
comEventBreak 1001 A Break signal was received.
comEventFrame 1004 Framing Error. The hardware detected a framing error.

comEventOverrun 1006 Port Overrun. A character was not read from the hardware
before the next character arrived and was lost.

comEventRxOver 1008 Receive Buffer Overflow. There is no room in the receive
buffer.

comEventRxParity 1009 Parity Error. The hardware detected a parity error.

comEventTxFull 1010 Transmit Buffer Full. The transmit buffer was full while trying
to queue a character.

comEventDCB 1011 Unexpected error retrieving Device Control Block (DCB) for
the port.

Communications events include the following settings:
Constant Value Description

comEvSend 1 There are fewer than Sthreshold number of characters in the
transmit buffer.

comEvReceive 2
Received Rthreshold number of characters. This event is
generated continuously until you use the Input property to
remove the data from the receive buffer.

comEvCTS 3 Change in Clear To Send line.

comEvDSR 4 Change in Data Set Ready line. This event is only fired when
DSR changes from 1 to 0.

comEvCD 5 Change in Carrier Detect line.

comEvRing 6 Ring detected. Some UARTs (universal asynchronous receiver-
transmitters) may not support this event.

comEvEOF 7 End Of File (ASCII character 26) character received.
Data Type
Integer

5

CommID Property
See Also Example Applies To
Returns a handle that identifies the communications device. This property is not available at design time
and is read-only at run time.
Syntax
object.CommID
The CommID property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This is the same value that's returned by the Windows API CreateFile function. Use this value when
calling any communications routines in the Windows API.
Data Type
Long

CommPort Property
See Also Example Applies To
Sets and returns the communications port number.
Syntax
object.CommPort[= value]
The CommPort property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A integer value specifying the port number.

Remarks
You can set value to any number between 1 and 16 at design time (the default is 1). However, the
MSComm control generates error 68 (Device unavailable) if the port does not exist when you
attempt to open it with the PortOpen property.
Warning You must set the CommPort property before opening the port.
Data Type
Integer

DSRHolding Property
See Also Example Applies To
Determines the state of the Data Set Ready (DSR) line. Typically, the Data Set Ready signal is sent by a
modem to its attached computer to indicate that it is ready to operate. This property is not available at
design time and is read-only at run time.
Syntax
object.DSRHolding
The object placeholder represents an object expression that evaluates to an object in the Applies To list.
The DSRHolding property returns the following values:
Value Description
True Data Set Ready line high
False Data Set Ready line low

Remarks
This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking routine for a
Data Terminal Equipment (DTE) machine.
Data Type
Boolean

6

DTREnable Property
See Also Example Applies To
Determines whether to enable the Data Terminal Ready (DTR) line during communications. Typically, the
Data Terminal Ready signal is sent by a computer to its modem to indicate that the computer is ready to
accept incoming transmission.
Syntax
object.DTREnable[= value]
The DTREnable property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

Value A Boolean expression specifying whether to enable the Data Terminal Ready (DTR)
line, as described in Settings.

Settings
The settings for value are:
Setting Description
True Enable the Data Terminal Ready line.
False (Default) Disable the Data Terminal Ready line.

Remarks
When DTREnable is set to True, the Data Terminal Ready line is set to high (on) when the port is opened,
and low (off) when the port is closed. When DTREnable is set to False, the Data Terminal Ready always
remains low.
Note In most cases, setting the Data Terminal Ready line to low hangs up the telephone.
Data Type
Boolean

EOFEnable Property
See Also Example Applies To
The EOFEnable property determines if the MSComm control looks for End Of File (EOF) characters
during input. If an EOF character is found, the input will stop and the OnComm event will fire with the
CommEvent property set to comEvEOF.
Syntax
object.EOFEnable [= value]
The EOFEnable property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value A boolean expression that determines whether the OnComm event is fired when an
EOF character is found, as described in Settings.

Settings
The settings for value are:
Setting Description

True The OnComm event is fired when an EOF character is
found.

False (Default) The OnComm event isn't fired when an EOF
character is found.

Remarks
When EOFEnable property is set to False, the control will not scan the input stream for EOF characters.

7

Handshaking Property
See Also Example Applies To
Sets and returns the hardware handshaking protocol.
Syntax
object.Handshaking [= value]
The Handshaking property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An integer expression specifying the handshaking protocol, as described in Settings.

Settings
The settings for value are:
Setting Value Description
comNone 0 (Default) No handshaking.
comXOnXOff 1 XON/XOFF handshaking.
comRTS 2 RTS/CTS (Request To Send/Clear To Send) handshaking.
comRTSXOnXOff 3 Both Request To Send and XON/XOFF handshaking.

Remarks
Handshaking refers to the internal communications protocol by which data is transferred from the
hardware port to the receive buffer. When a character of data arrives at the serial port, the communications
device has to move it into the receive buffer so that your program can read it. If there is no receive buffer
and your program is expected to read every character directly from the hardware, you will probably lose
data because the characters can arrive very quickly.
A handshaking protocol insures data is not lost due to a buffer overrun, where data arrives at the port too
quickly for the communications device to move the data into the receive buffer.
Data Type
Integer

InBufferCount Property
See Also Example Applies To
Returns the number of characters waiting in the receive buffer. This property is not available at design time.
Syntax
object.InBufferCount[= value]
The InBufferCount property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An integer expression specifying the number of characters waiting in the receive
buffer.

Remarks
InBufferCount refers to the number of characters that have been received by the modem and are waiting in
the receive buffer for you to take them out. You can clear the receive buffer by setting the InBufferCount
property to 0.
Note Do not confuse this property with the InBufferSize property. The InBufferSize property reflects the
total size of the receive buffer.
Data Type
Integer

InBufferSize Property
See Also Example Applies To
Sets and returns the size of the receive buffer in bytes.

8

Syntax
object.InBufferSize[= value]
The InBufferSize property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An integer expression specifying the size of the receive buffer in bytes.

Remarks
InBufferSize refers to the total size of the receive buffer. The default size is 1024 bytes. Do not confuse
this property with the InBufferCount property which reflects the number of characters currently waiting in
the receive buffer.
Note Note that the larger you make the receive buffer, the less memory you have available to your
application. However, if your buffer is too small, it runs the risk of overflowing unless handshaking is used.
As a general rule, start with a buffer size of 1024 bytes. If an overflow error occurs, increase the buffer size
to handle your application's transmission rate.
Data Type
Integer

Index Property (ActiveX Controls)
See Also Example Applies To
Returns or sets the number that uniquely identifies an object in a collection.
Syntax
object.Index
The object placeholder is an object expression that evaluates to an object in the Applies To list.
Remarks
The Index property is set by default to the order of the creation of objects in a collection. The index for the
first object in a collection will always be one (1).
The value of the Index property of an object can change when objects in the collection are reordered, such
as when you set the Sorted property to True. If you expect the Index property to change dynamically, it
may be more useful to refer to objects in a collection by using the Key property.

Button Object
ColumnHeader Object, ColumnHeaders Collection
ListImage Object, ListImages Collection
ListItem Object, ListItems Collection
Node Object, Nodes Collection
Panel Object
SSTab Control
Tab Object

Button Object
See Also Example Properties Methods Events
A Button object represents an individual button in the Buttons collection of a Toolbar control.
Remarks
For each Button object, you can add text or a bitmap image, or both, from an ImageList control, and set
properties to change its state and style.
At design time, use the Insert Button and Remove Button buttons on the Buttons tab in the Properties Page
of the Toolbar control to insert and remove Button objects from the Buttons collection. At run time, you
can also add Button objects by using the Add method of the Buttons collection.
At design time and run time, you can set the Caption, Image, Value, MixedState, and ToolTipText
properties to change the appearance of each Button object.

9

Whenever a button is clicked on the Toolbar control, the ButtonClick event is called with the selected
Button object passed in as a parameter. To cause some action to occur when a button is clicked, use the
Index or Key properties in a Select Case statement as in the following code:
Select Case Button.Key
 Case Is = "open" ' Open file.
 ' Add code to Open a file here
 Case Is = "save" ' Save file.
 ' Add code to Save a file here
 Case Else
 ' If any other button is pressed
End Select

ColumnHeader Object, ColumnHeaders
Collection
See Also Example Properties Methods Events

� A ColumnHeader object is an item in a ListView control that contains heading text.

� A ColumnHeaders collection contains one or more ColumnHeader objects.
Syntax
listview.ColumnHeaders
listview.ColumnHeaders(index)
The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to the standard collection syntax.
The ColumnHeader object, ColumnHeaders collection syntax has these parts:
Part Description
listview An object expression that evaluates to a ListView control.

index
Either an integer or string that uniquely identifies a member of an object
collection. An integer would be the value of the Index property; a string would
be the value of the Key property.

Remarks
You can view ColumnHeader objects in Report view only.
You can add ColumnHeader objects to a ListView control at both design time and run time.
With a ColumnHeader object, a user can:

� Click it to trigger the ColumnClick event and sort the items based on that data item.

� Grab the object's right border and drag it to adjust the width of the column.

� Hide ColumnHeader objects in Report view.
There is always one column in the ListView control, which is Column 1. This column contains the actual
ListItem objects; not their subitems. The second column (Column 2) contains subitems. Therefore, you
always have one more ColumnHeader object than subitems and the ListItem object's SubItems property
is a 1-based array of size ColumnHeaders.Count - 1.
The number of ColumnHeader objects determines the number of subitems each ListItem object in the
control can have. When you delete a ColumnHeader object, all of the subitems associated with the column
are also deleted, and each ListItem object's subitem array shifts to update the indices of the
ColumnHeader, causing the remaining column headers' SubItemIndex properties to change

10

Input Property
See Also Example Applies To
Returns and removes a stream of data from the receive buffer. This property is not available at design time
and is read-only at run time.
Syntax
object.Input
The Input property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
The InputLen property determines the number of characters that are read by the Input property. Setting
InputLen to 0 causes the Input property to read the entire contents of the receive buffer.
The InputMode property determines the type of data that is retrieved with the Input property. If
InputMode is set to comInputModeText then the Input property returns text data in a Variant. If
InputMode is comInputModeBinary then the Input property returns binary data in an array of bytes in a
Variant.
Data Type
Variant

Input Property Example
This example shows how to retrieve data from the receive buffer:
Private Sub Command1_Click()
Dim InString as String
' Retrieve all available data.
MSComm1.InputLen = 0

' Check for data.
If MSComm1.InBufferCount Then
 ' Read data.
 InString = MSComm1.Input
End If
End Sub

InputLen Property
See Also Example Applies To
Sets and returns the number of characters the Input property reads from the receive buffer.
Syntax
object.InputLen [= value]
The InputLen property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An integer expression specifying the number of characters the Input property reads
from the receive buffer.

Remarks
The default value for the InputLen property is 0. Setting InputLen to 0 causes the MSComm control to
read the entire contents of the receive buffer when Input is used.
If InputLen characters are not available in the receive buffer, the Input property returns a zero-length
string (""). The user can optionally check the InBufferCount property to determine if the required number
of characters are present before using Input.

11

This property is useful when reading data from a machine whose output is formatted in fixed-length blocks
of data.
Data Type
Integer

InputLen Property Example
This example shows how to read 10 characters of data:
Private Command1_Click()
Dim CommData as String
' Specify a 10 character block of data.
MSComm1.InputLen = 10
' Read data.
CommData = MSComm1.Input
End Sub

InputMode Property
See Also Example Applies To
Sets or returns the type of data retrieved by the Input property.
Syntax
object.InputMode [= value]
The InputMode property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A value or constant that specifies the input mode, as described in Settings.

Settings
The settings for value are:
Constant Value Description

comInputModeText 0 (Default) Data is retrieved through the Input property as
text.

comInputModeBinary 1 Data is retrieved through the Input property as binary data.
Remarks
The InputMode property determines how data will be retrieved through the Input property. The data will
either be retrieved as string or as binary data in a byte array.
Use comInputModeText for data that uses the ANSI character set. Use comInputModeBinary for all
other data such as data that has embedded control characters, Nulls, etc.

InputMode Property Example
This example reads 10 bytes of binary data from the communications port and assigns it to a byte array.
Private Sub Command1_Click()
Dim Buffer as Variant
Dim Arr() as Byte

' Set and open port
MSComm1.CommPort = 1
MSComm1.PortOpen = True

' Set InputMode to read binary data
MSComm1.InputMode = comInputModeBinary

12

' Wait until 10 bytes are in the input buffer
Do Until MSComm1.InBufferCount < 10
 DoEvents
Loop

' Assign to byte array for processing
Arr = MSComm1.Input

End Sub

Name Property
See Also Example Applies To

� Returns the name used in code to identify a form, control, or data access object. Read-only at run
time.

� Returns or sets the name of a font object.
Syntax
object.Name
The object placeholder represents an object expression that evaluates to an object in the Applies To list. If
object is omitted, the form associated with the active form module is assumed to be object.
Remarks
The default name for new objects is the kind of object plus a unique integer. For example, the first new
Form object is Form1, a new MDIForm object is MDIForm1, and the third TextBox control you create on
a form is Text3.
An object's Name property must start with a letter and can be a maximum of 40 characters. It can include
numbers and underline (_) characters but can't include punctuation or spaces. Forms can't have the same
name as another public object such as Clipboard, Screen, or App. Although the Name property setting
can be a keyword, property name, or the name of another object, this can create conflicts in your code.
You can use a form's Name property with the Dim statement at run time to create other instances of the
form. You can't have two forms with the same name at design time.
You can create an array of controls of the same type by setting the Name property to the same value. For
example, when you set the name of all option buttons in a group to MyOpt, Visual Basic assigns unique
values to the Index property of each control to distinguish it from others in the array. Two controls of
different types can't share the same name.
Note Although Visual Basic often uses the Name property setting as the default value for the Caption,
LinkTopic, and Text properties, changing one of these properties doesn't affect the others.
Changing the case of the Name property value for a Form or other module without otherwise changing the
name itself, however, can cause a “Conflicting names” error message the next time the project containing
the form or module is loaded. For example, changing “Form1” to “form1” will cause the error; changing
“Form1” to “formX” will not.
The error is caused by the way module names are stored within the project file – the procedure for changing
names within the project file isn’t case sensitive, while the procedure for reading names on project load is.

NullDiscard Property
See Also Example Applies To
Determines whether null characters are transferred from the port to the receive buffer.
Syntax
object.NullDiscard [= value]
The NullDiscard property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

13

value An boolean expression specifying whether null characters are transferred from the port
to the receive buffer, as described in Settings

Settings
The settings for value are:
Setting Description
True Null characters are not transferred from the port to the receive buffer.
False (Default) Null characters are transferred from the port to the receive buffer.

Remarks
A null character is defined as ASCII character 0, Chr$(0).
Data Type
Boolean

Object Property (ActiveX Controls)
See Also Example Applies To
Returns the object and/or a setting of an object's method or property.
Syntax
object.Object[.property | .method]
The Object property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
property Property that the object supports.
method Method that the object supports.

Remarks
Use this property to specify an object you want to use in an Automation task.
You use the object returned by the Object property in an Automation task by using the properties and
methods of that object. For information on which properties and methods an object supports, see the
documentation for the application that created the object.

OutBufferSize Property
See Also Example Applies To
Sets and returns the size, in bytes, of the transmit buffer.
Syntax
object.OutBufferSize [= object]
The OutBufferSize property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value An integer expression specifying the size of the transmit buffer.

Remarks
OutBufferSize refers to the total size of the transmit buffer. The default size is 512 bytes. Do not confuse
this property with the OutBufferCount which reflects the number of bytes currently waiting in the transmit
buffer.
Note The larger you make the transmit buffer, the less memory you have available to your application.
However, if your buffer is too small, you run the risk of overflowing unless you use handshaking. As a
general rule, start with a buffer size of 512 bytes. If an overflow error occurs, increase the buffer size to
handle your application's transmission rate.
Data Type
Integer

14

OutBufferCount Property
See Also Example Applies To
Returns the number of characters waiting in the transmit buffer. You can also use it to clear the transmit
buffer. This property is not available at design time.
Syntax
object.OutBufferCount [= value]
The OutBufferCount property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An integer expression specifying the number of characters waiting in the transmit
buffer.

Remarks
You can clear the transmit buffer by setting the OutBufferCount property to 0.
Note Do not confuse the OutBufferCount property with the OutBufferSize property which reflects the
total size of the transmit buffer.
Data Type
Integer

Output Property
See Also Example Applies To
Writes a stream of data to the transmit buffer. This property is not available at design time and is write-only
at run time.
Syntax
object.Output [= value]
The Output property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A string of characters to write to the transmit buffer.

Remarks
The Output property can transmit text data or binary data. To send text data using the Output property,
you must specify a Variant that contains a string. To send binary data, you must pass a Variant which
contains a byte array to the Output property.
Normally, if you are sending an ANSI string to an application, you can send it as text data. If you have data
that contains embedded control characters, Null characters, etc., then you will want to pass it as binary data.
Data Type
Variant

Output Property Example
The following example shows how to send every character the user types to the serial port:
Private Sub Form_KeyPress (KeyAscii As Integer)
 Dim Buffer as Variant

 ' Set and open port
 MSComm1.CommPort = 1
 MSComm1.PortOpen = True

 Buffer = Chr$(KeyAscii)
 MSComm1.Output = Buffer
End Sub

15

Parent Property
See Also Example Applies To
Returns the form, object, or collection that contains a control or another object or collection.
Syntax
object.Parent
The object placeholder represents an object expression that evaluates to an object in the Applies To list.
Remarks
Use the Parent property to access the properties, methods, or controls of an object's parent. For example:
MyButton.Parent.MousePointer = 4
The Parent property is useful in an application in which you pass objects as arguments. For example, you
could pass a control variable to a general procedure in a module, and use the Parent property to access its
parent form.
There is no relationship between the Parent property and the MDIChild property. There is, however, a
parent-child relationship between an MDIForm object and any Form object that has its MDIChild
property set to True.

Parent Property Example
This example passes a control from a form that doesn't have the focus to a procedure in a module, and then
displays the state of the control on the parent form. To try this example, create three forms: Form1,
containing a CommandButton control, and Form2 and Form3, each containing a CheckBox control. You
must also create a new module (click Add Module in the Project menu). Paste the code into the
Declarations sections of the respective forms or module, and then press F5 to run the program.
' Enter this code into Form1.
Private Sub Form_Load ()
 Form2.Show ' Display all forms.
 Form3.Show
 Form2.AutoRedraw = True
 Form3.AutoRedraw = True
End Sub

Private Sub Command1_Click ()
 ReadCheckBox Form2.Check1 ' Call procedure in other module
 ReadCheckBox Form3.Check1 ' and send control as argument.
End Sub

' Enter this code into Module1.
Sub ReadCheckBox (Source As Control)
 If Source.Value Then
 Source.Parent.Cls ' Clear parent form.
 Source.Parent.Print "CheckBox is ON." ' Display on parent form.
 Else
 Source.Parent.Cls ' Clear parent form.
 Source.Parent.Print "CheckBox is OFF." ' Display on parent form.
 End If
End Sub

ParityReplace Property
See Also Example Applies To

16

Sets and returns the character that replaces an invalid character in the data stream when a parity error
occurs.
Syntax
object.ParityReplace [= value]
The ParityReplace property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A string expression representing a character, as described in Remarks.

Remarks
The parity bit refers to a bit that is transmitted along with a specified number of data bits to provide a small
amount of error checking. When you use a parity bit, the MSComm control adds up all the bits that are set
(having a value of 1) in the data and tests the sum as being odd or even (according to the parity setting used
when the port was opened).
By default, the control uses a question mark (?) character for replacing invalid characters. Setting
ParityReplace to an empty string ("") disables replacement of the character where the parity error occurs.
The OnComm event is still fired and the CommEvent property is set to comEventRXParity.
The ParityReplace character is used in a byte-oriented operation, and must be a single-byte character. You
can specify any ANSI character code with a value from 0 to 255.
Data Type
String

PortOpen Property
See Also Example Applies To
Sets and returns the state of the communications port (open or closed). Not available at design time.
Syntax
object.PortOpen [= value]
The PortOpen property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
value A boolean expression specifying the state of the communications port.

Settings
The settings for value are:
Setting Description
True Port is opened
False Port is closed

Remarks
Setting the PortOpen property to True opens the port. Setting it to False closes the port and clears the
receive and transmit buffers. The MSComm control automatically closes the serial port when your
application is terminated.
Make sure the CommPort property is set to a valid port number before opening the port. If the CommPort
property is set to an invalid port number when you try to open the port, the MSComm control generates
error 68 (Device unavailable).
In addition, your serial port device must support the current values in the Settings property. If the Settings
property contains communications settings that your hardware does not support, your hardware may not
work correctly.
If either the DTREnable or the RTSEnable properties is set to True before the port is opened, the
properties are set to False when the port is closed. Otherwise, the DTR and RTS lines remain in their
previous state.
Data Type
Boolean

17

PortOpen Property Example
The following example opens communications port number 1 at 9600 baud with no parity checking, 8 data
bits, and 1 stop bit:
MSComm1.Settings = "9600,n,8,1"
MSComm1.CommPort = 1
MSComm1.PortOpen = True

RTSEnable Property
See Also Example Applies To
Determines whether to enable the Request To Send (RTS) line. Typically, the Request To Send signal that
requests permission to transmit data is sent from a computer to its attached modem.
Syntax
object.RTSEnable[= value]
The RTSEnable property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An boolean expression specifying whether the Request To Send (RTS) line is enabled,
as described in Settings.

Settings
The settings for value are:
Setting Description
True Enables the Request To Send line.
False (Default) Disables the Request To Send line.

Remarks
When RTSEnable is set to True, the Request To Send line is set to high (on) when the port is opened, and
low (off) when the port is closed.
The Request To Send line is used in RTS/CTS hardware handshaking. The RTSEnable property allows
you to manually poll the Request To Send line if you need to determine its state.
For more information on handshaking protocols, see the Handshaking property.
Data Type

RThreshold Property
See Also Example Applies To
Sets and returns the number of characters to receive before the MSComm control sets the CommEvent
property to comEvReceive and generates the OnComm event.
Syntax
object.Rthreshold [= value]
The Rthreshold property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An integer expression specifying the number of characters to receive before generating
the OnComm event.

Remarks
Setting the RThreshold property to 0 (the default) disables generating the OnComm event when
characters are received.
Setting RThreshold to 1, for example, causes the MSComm control to generate the OnComm event every
time a single character is placed in the receive buffer.
Data Type

18

Integer

SThreshold Property
See Also Example Applies To
Sets and returns the minimum number of characters allowable in the transmit buffer before the MSComm
control sets the CommEvent property to comEvSend and generates the OnComm event.
Syntax
object.SThreshold [= value]
The SThreshold property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An integer expression representing the minimum number of characters in the transmit
buffer before the OnComm event is generated.

Remarks
Setting the SThreshold property to 0 (the default) disables generating the OnComm event for data
transmission events. Setting the SThreshold property to 1 causes the MSComm control to generate the
OnComm event when the transmit buffer is completely empty.
If the number of characters in the transmit buffer is less than value, the CommEvent property is set to
comEvSend, and the OnComm event is generated. The comEvSend event is only fired once, when the
number of characters crosses the SThreshold. For example, if SThreshold equals five, the comEvSend
event occurs only when the number of characters drops from five to four in the output queue. If there are
never more than SThreshold characters in the output queue, the event is never fired.
Data Type
Integer

Settings Property
See Also Example Applies To
Sets and returns the baud rate, parity, data bit, and stop bit parameters.
Syntax
object.Settings [= value]
The Settings property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.

value An string expression representing the communications port settings, as described
below.

Remarks
If value is not valid when the port is opened, the MSComm control generates error 380 (Invalid
property value).
Value is composed of four settings and has the following format:
"BBBB,P,D,S"
Where BBBB is the baud rate, P is the parity, D is the number of data bits, and S is the number of stop bits.
The default value of value is:
"9600,N,8,1"
The following table lists the valid baud rates.
Setting
110
300
600
1200
2400

19

4800
9600 (Default)
14400
19200
28800
38400
56000
57600
115200
128000
256000

The following table describes the valid parity values.
Setting Description
E Even
M Mark
N (Default) None
O Odd
S Space

The following table lists the valid data bit values.
Setting
4
5
6
7
8 (Default)

The following table lists the valid stop bit values.
Setting
1 (Default)
1.5
2

Data Type
String

Settings Example
The following example sets the control's port to communicate at 9600 baud with no parity checking, 8 data
bits, and 1 stop bit:
MSComm1.Settings = "9600,N,8,1"

Tag Property (ActiveX Controls)
See Also Example Applies To
Returns or sets an expression that stores any extra data needed for your program. Unlike other properties,
the value of the Tag property isn't used by Visual Basic; you can use this property to identify objects.
Syntax
object.Tag [= expression]
The Tag property syntax has these parts:
Part Description
object An object expression that evaluates to an object in the Applies To list.
expression A string expression identifying the object. The default is a zero-length string

20

("").
Remarks
You can use this property to assign an identification string to an object without affecting any of its other
property settings or causing side effects. The Tag property is useful when you need to check the identity of
a control or MDIForm object that is passed as a variable to a procedure.
Tip When you create a new instance of a form, assign a unique value to the Tag property.
Note The Tag property is of type Variant for ActiveX control collections such as Toolbar Button objects,
TreeView Node objects, ListView ListItem and ColumnHeader objects, ImageList ListImage objects,
TabStrip Tab objects, and StatusBar Panel objects. You can use the Tag property to pass values, but it
does not allow you to pass objects.

Tag Property Example
This example displays a unique icon for each control being dragged. To try this example, paste the code
into the Declarations section of a form that contains three PictureBox controls. Set the DragMode
property to 1 for Picture1 and Picture2, and then press F5. Use the mouse to drag Picture1 or Picture2 over
Picture3 controls.
Private Sub Form_Load ()
 Picture1.Tag = "ICONS\ARROWS\POINT03.ICO"
 Picture2.Tag = "ICONS\ARROWS\POINT04.ICO"
End Sub

Private Sub Picture3_DragOver (Source As Control, X As Single, Y As
Single, State As Integer)
 If State = vbEnter Then
 ' Select based on each PictureBox’s Name property.
 Select Case Source.Name
 Case "Picture1"
 ' Load icon for Picture1.
 Source.DragIcon = LoadPicture(Picture1.Tag) Case
"Picture2"
 ' Load icon for Picture2.
 Source.DragIcon = LoadPicture(Picture2.Tag)
 End Select
 ElseIf State = vbLeave Then
 ' When source isn't over Picture3, unload icon.
 Source.DragIcon = LoadPicture ()
 End If
End Sub

21

Private Sub Form_Load()
 Left = (Screen.Width - Width) / 2
 Top = (Screen.Height - Height) / 2
 TextAddr = 768
 TextValue = 0
 OptionByte = True
 OptionHex = True
End Sub

Private Sub OnAbout_Click()
 About.Show 1
End Sub

Private Sub OnExit_Click()
 End
End Sub

Private Sub OnRead_Click()
 Dim Value As Long

 If OptionByte Then
 Value = DlPortReadPortUchar(Val(TextAddr))
 ElseIf OptionWord Then
 Value = DlPortReadPortUshort(Val(TextAddr))
 If Value < 0 Then Value = Value + 65536
 Else
 Value = DlPortReadPortUlong(Val(TextAddr))
 End If

 If OptionDec Then
 TextValue = Value
 Else
 TextValue = "&H" + Hex(Value)
 End If
End Sub

Private Sub OnWrite_Click()
 Dim Value As Long

 Value = Val(TextValue)
 If OptionByte Then
 If Value < 0 Then Value = Value + 256
 DlPortWritePortUchar Val(TextAddr), Value
 ElseIf OptionWord Then
 If Value < 0 Then Value = Value + 65536
 DlPortWritePortUshort Val(TextAddr), Value
 Else
 DlPortWritePortUlong Val(TextAddr), Value
 End If
End Sub

Private Sub OptionDec_Click()
 TextAddr = Val(TextAddr)
 TextValue = Val(TextValue)
End Sub

22

Private Sub OptionHex_Click()
 TextAddr = "&H" + Hex(Val(TextAddr))
 TextValue = "&H" + Hex(Val(TextValue))
End Sub

Private Sub OptionWord_Click()

End Sub

Private Sub Option3_Click()

End Sub

Private Sub Option4_Click()

End Sub

Private Sub Form_Load()
 Left = (Screen.Width - Width) / 2
 Top = (Screen.Height - Height) / 2
 TextAddr = 768
 TextValue = 0
 OptionByte = True
 OptionHex = True
End Sub

Private Sub Frame1_DragDrop(Source As Control, X As Single, Y As
Single)

End Sub

Private Sub OnAbout_Click()
 About.Show 1
End Sub

Private Sub OnExit_Click()
 End
End Sub

Private Sub OnRead_Click()
 Dim Value As Long

 If OptionByte Then
 Value = DlPortReadPortUchar(Val(TextAddr))
 ElseIf OptionWord Then
 Value = DlPortReadPortUshort(Val(TextAddr))
 If Value < 0 Then Value = Value + 65536

23

 Else
 Value = DlPortReadPortUlong(Val(TextAddr))
 End If

 If OptionDec Then
 TextValue = Value
 Else
 TextValue = "&H" + Hex(Value)
 End If
End Sub

Private Sub OnWrite_Click()
 Dim Value As Long

 Value = Val(TextValue)
 If OptionByte Then
 If Value < 0 Then Value = Value + 256
 DlPortWritePortUchar Val(TextAddr), Value
 ElseIf OptionWord Then
 If Value < 0 Then Value = Value + 65536
 DlPortWritePortUshort Val(TextAddr), Value
 Else
 DlPortWritePortUlong Val(TextAddr), Value
 End If
End Sub

Private Sub OptionDec_Click()
 TextAddr = Val(TextAddr)
 TextValue = Val(TextValue)
End Sub

Private Sub OptionHex_Click()
 TextAddr = "&H" + Hex(Val(TextAddr))
 TextValue = "&H" + Hex(Val(TextValue))
End Sub

Private Sub OptionWord_Click()

End Sub

Private Sub Frame2_DragDrop(Source As Control, X As Single, Y As
Single)

End Sub

Private Sub OnAbout_Click()
 About.Show 1
End Sub

Private Sub OnExit_Click()
 End
End Sub

24

Private Sub OnRead_Click()
 Dim Value As Long

 If OptionByte Then
 Value = DlPortReadPortUchar(Val(TextAddr))
 ElseIf OptionWord Then
 Value = DlPortReadPortUshort(Val(TextAddr))
 If Value < 0 Then Value = Value + 65536
 Else
 Value = DlPortReadPortUlong(Val(TextAddr))
 End If

 If OptionDec Then
 TextValue = Value
 Else
 TextValue = "&H" + Hex(Value)
 End If
End Sub

Private Sub OnWrite_Click()
 Dim Value As Long

 Value = Val(TextValue)
 If OptionByte Then
 If Value < 0 Then Value = Value + 256
 DlPortWritePortUchar Val(TextAddr), Value
 ElseIf OptionWord Then
 If Value < 0 Then Value = Value + 65536
 DlPortWritePortUshort Val(TextAddr), Value
 Else
 DlPortWritePortUlong Val(TextAddr), Value
 End If
End Sub

Private Sub OptionDec_Click()
 TextAddr = Val(TextAddr)
 TextValue = Val(TextValue)
End Sub

Private Sub OptionHex_Click()
 TextAddr = "&H" + Hex(Val(TextAddr))
 TextValue = "&H" + Hex(Val(TextValue))
End Sub

Private Sub OptionWord_Click()

End Sub

25

IEEE 1284 Type C however, is a 36 conductor connector like
the Centronics, but smaller. This connector is claimed to have
a better clip latch, better electrical properties and is easier to
assemble. It also contains two more pins for signals which can
be used to see whether the other device connected, has power.
1284 Type C connectors are recommended for new designs, so
we can look forward on seeing these new connectors in the
near future.

Pin No (D-Type 25) Pin No
(Centronics)

SPP
Signal

Direction
In/out Register Hardware

Inverted
1 1 nStrobe In/Out Control Yes
2 2 Data 0 Out Data
3 3 Data 1 Out Data
4 4 Data 2 Out Data
5 5 Data 3 Out Data
6 6 Data 4 Out Data
7 7 Data 5 Out Data
8 8 Data 6 Out Data
9 9 Data 7 Out Data
10 10 nAck In Status
11 11 Busy In Status Yes

12 12

Paper-
Out /

Paper-
End

In Status

13 13 Select In Status

14 14 nAuto-
Linefeed In/Out Control Yes

15 32 nError /
nFault In Status

16 31 nInitializ
e

In/Out Control

17 36

nSelect-
Printer /
nSelect-

In

In/Out Control Yes

18 - 25 19-30 Ground Gnd

26

27

